MATHEMATICS 4-8 MATHEMATICS CERTIFICATION

Teacher Preparation Program Admission Requirements

Apply 3rd Year, 1st Semester

1. Application to Teacher Prep Program via TK20 in September or February
2. GPA requirement of 2.8 cumulative
3. Completion of 15 hours in Content / Major Area for certification in 4-8 with no grade below C

Degree Requirements

Students should refer to their DegreeWorks degree audit in their Web for Students account for more information regarding their degree requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Requirements<sup>6</sup></td>
<td>General Education Requirements (catalog.tamut.edu/academic-information/university-core-curriculum/#corecurriculumtext)</td>
<td>42</td>
</tr>
<tr>
<td>MATH 2305</td>
<td>Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2318</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2413</td>
<td>Calculus I<sup>7</sup></td>
<td>4</td>
</tr>
<tr>
<td>MATH 2414</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2415</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2320</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 321</td>
<td>College Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 334</td>
<td>Introduction to Abstract Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 357</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 380</td>
<td>Real Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 430</td>
<td>Mathematical Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MATH 437</td>
<td>Number Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 493</td>
<td>Capstone in Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Other Requirements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 1308</td>
<td>Biology for Non-Science Majors I<sup>7</sup></td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1108</td>
<td>Biology for Non-science Majors I Lab<sup>7</sup></td>
<td>1</td>
</tr>
<tr>
<td>BIOL 1309</td>
<td>Biology for Non-Science Majors II<sup>7</sup></td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1109</td>
<td>Biology for Non-science Majors II Lab<sup>7</sup></td>
<td>1</td>
</tr>
<tr>
<td>PHYS 1415</td>
<td>Physical Science I (lab can count in Core Component Area option)<sup>7</sup></td>
<td>4</td>
</tr>
<tr>
<td>RDG 343</td>
<td>Reading Beyond the Primary Grades</td>
<td>3</td>
</tr>
<tr>
<td>RDG 350</td>
<td>Emergent Literacy Development</td>
<td>3</td>
</tr>
<tr>
<td>Upper Division Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Prof. Development<sup>7</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 311</td>
<td>Growth and Development for EC to Grade 12 (EL)</td>
<td>3</td>
</tr>
<tr>
<td>ED 321</td>
<td>Foundations of Education for Secondary (EL)</td>
<td>3</td>
</tr>
<tr>
<td>Block 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 331</td>
<td>Classroom and Behavior Management<sup>9</sup></td>
<td>3</td>
</tr>
<tr>
<td>ED 495</td>
<td>Block 1 - Co-Teaching Practicum for Certification Candidates (EL)<sup>9</sup></td>
<td>3</td>
</tr>
<tr>
<td>Block 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 496</td>
<td>Block 2 - Co-Teaching Practicum for Certification Candidates (EL)<sup>10</sup></td>
<td>3</td>
</tr>
<tr>
<td>SPED 418</td>
<td>Research, Trends, and Issues in Education<sup>10</sup></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>as needed to satisfy minimum degree requirements including 54 SCH in Upper Division coursework</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum Hours for Degree 120

⁶ Minimum grade of "C" required in all Major, Education and Professional Development Courses
⁷ Satisfies core curriculum
⁸ Requires Admission to Teacher Prep Program
Placement will be determined by TSI readiness indicators. Students must complete the course with a C or better to receive credit. Appropriate computer software and handheld technologies will be utilized.

factoring, rational expressions and equations, systems of equations, graphing techniques, radical expressions and equations, and quadratic equations.

This course provides a study of the concepts and applications of algebraic expressions, equations, inequalities, problem-solving, polynomials and

Students must be considered in their junior year and will be required to participate in 8 hours of field experience. This course integrates the principles of Experiential Learning and meets the criteria of field work.

This course provides students seeking certification in grades 4-8 and 7-12 skills for designing instruction and assessment that promote a growth mindset and create a positive, productive classroom environment. Students will apply skills and knowledge in lesson and unit planning as well as content pedagogy specific to area of certification. Traditional as well as innovative technologies will be addressed. State of Texas Assessments of Academic Readiness (STAAR) and End of Course Exams (EOC) effective content pedagogy will be emphasized in this course. This course integrates the principles of Experiential Learning and meets the criteria for field work.

ED 331. Classroom and Behavior Management. 3 Hours.
This course presents best practices in classroom and behavior management including management of time, materials, and space. Additionally, the course examines strategies for managing individual and large-group student behaviors, transitions, lab activities, and other arrangements for classrooms in general and special education. Prerequisite: Admitted to the Teacher Preparation Program.

ED 435. Secondary Content Pedagogy. 3 Hours.
This course provides students seeking certification in grades 4-8 and 7-12 with pedagogical best-practices. Students will learn lesson planning, assessment, and available resources for their specific content area. Methods for accessing and processing information through traditional as well as new technologies will be addressed. Prerequisite: Admission to the Teacher Preparation Program.

ED 495. Block 1 - Co-Teaching Practicum for Certification Candidates (EL). 3 Hours.
This course provided clinical experience in the public school setting as part of the field experience requirements for the undergraduate Teacher Preparation Program. The Teacher Candidate is required to spend six hours per week for 12 weeks in an assigned classroom. A university field supervisor in conjunction with the cooperating teacher supervises the Clinical Teacher. Block 1 is the first semester of the co-teaching assignment (2 semesters) in which the Teacher Candidate and Cooperating Teacher are considered co-teachers for the class. Course is graded on a Satisfactory (S) or Unsatisfactory (U) basis for 3 SCH. This course integrates the principles of experiential learning and meets the criterion for internship. Prerequisite: Met admission requirements to undergraduate field based placement guidelines.

ED 496. Block 2 - Co-Teaching Practicum for Certification Candidates (EL). 3 Hours.
This course provided clinical experience in the public school setting as part of field experience requirements for the undergraduate Teacher Preparation Program. The Teacher Candidate is required to spend 72 complete instructional days in an assigned classroom. A university field supervisor in conjunction with the cooperating teacher supervises the Clinical Teacher. Block 2 is the second semester of the co-teaching assignment (2 semesters) in which Teacher Candidate and Cooperating Teacher are co-teachers for the public school class. Course graded on Satisfactory (S) or Unsatisfactory (U) basis for 3 SCH. This course integrates the principles of experiential learning and meets the criterion for internship. Prerequisite: successful completion of ED 495, continued acceptance in the public school classroom, and completion of program requirements.

ITED 350. Technology and Digital Literacy. 3 Hours.
This course is designed to assist students with developing skills for using web applications and mobile computing. The activities in the course assist students with promoting critical thinking and problem-solving skills by engaging them with digital tools being used in daily life. Topics covered include: technology in society, computers and digital components, the internet—how it works and making the most of web resources, applications for work and play, and systems software—operating systems, utilities and file management, information technology ethics, understanding and assessing hardware, digital devices and media and protection, information technology careers, software programming, databases and information systems, networking and security. There is an emphasis on using the Microsoft Office Suite of Products in this course including Word, Excel, PowerPoint, and Access.

MATH 0300. Pre-Algebra. 3 Hours.
This course provides a study of the concepts and applications of arithmetic operations on whole numbers, fractions, and decimals, ratios and proportions, percentages, measurements, interpretation of graphs and statistics, geometry, exponents, algebraic expression, and problem solving. Students must complete the course with a C or better to receive credit. Calculators will not be allowed for use in this course. Placement will be determined by TSI readiness indicators.

MATH 0301. Elementary Algebra. 3 Hours.
This course provides a study of the concepts and applications of algebraic expressions, equations, inequalities, problem solving, polynomials and factoring, rational expressions and equations, systems of equations, graphing techniques, radical expressions and equations, and quadratic equations. Students must complete the course with a C or better to receive credit. Appropriate computer software and hand-held technologies will be utilized. Placement will be determined by TSI readiness indicators.
MATH 0302. Intermediate Algebra. 3 Hours.
This course provides a study of the concepts and applications of rational expressions and equations, linear equations and inequalities, radicals, quadratic equations, and graphs. This course is intended for students who place below the minimum score on an entrance assessment test in mathematics. Appropriate computer software and hand held technologies will be utilized. Students must complete the course with a C or better to receive credit. Placement will be determined by TSI readiness indicators.

MATH 1314. College Algebra. 3 Hours.
This course provides a rigorous study of the concepts and applications of linear, quadratic, higher-order polynomial, rational, radical, exponential and logarithmic functions, and solving systems of equations using various methods. Additional topics such as sequences, series, probability, and conics may be included. This course is designed to prepare STEM majors for success in calculus. Appropriate computer software and hand held technologies will be utilized. Prerequisite: Must have satisfied the math portion of TSI. Placement will also be determined by the Math Placement Exam score.

MATH 1316. Plane Trigonometry. 3 Hours.
This course provides a rigorous study of the concepts and applications of sets, ordered relations, number intervals, trigonometric functions, radian measure, variations and graphs of functions, solutions of right and general triangles, identities, graphing, inverse functions, circular functions, vectors, complex numbers, polar and parametric equations. This course is designed to further prepare STEM majors for success in calculus. Appropriate computer software and hand held technologies will be utilized. Prerequisite: Must have satisfied the math portion of TSI. Placement will also be determined by the Math Placement Exam score.

MATH 1324. Mathematics for Business and Social Sciences I. 3 Hours.
This course provides a rigorous study of the concepts from college algebra (linear equations, quadratic equations, functions and graphs, inequalities), sets, probability, mathematics of finance (simple and compound interest, annuities), linear programming, matrices, and systems of linear equations. This course is designed to prepare students majoring in business or social science. Applications will be taken from management, economics, business, and sociology. Appropriate computer software and hand held technologies will be utilized. Prerequisite: Must have satisfied the math portion of TSI.

MATH 1325. Business Calculus. 3 Hours.
This course provides a rigorous study of the concepts of limits and continuity, derivatives, graphing and optimization, exponential and logarithmic functions, antiderivatives, and integration. This course is designed to prepare students majoring in business. Applications will be taken from management, economics, and business. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 1324 or MATH 1314 with a C or better.

MATH 1332. Contemporary Mathematics I. 3 Hours.
This course provides a study of the concepts and applications of sets, logic, number systems, number theory, relations, functions, probability and statistics. Applications will be taken from meaningful real-world examples that allow students to see how mathematics can be used by everyone to solve problems, not just by mathematicians and scientists. This course is designed for non-STEM, non-business majors. Appropriate computer software and hand held technologies will be utilized. Prerequisite: Must have satisfied the math portion of TSI.

MATH 1342. Elementary Statistical Methods. 3 Hours.
This course provides a rigorous study of the concepts and applications of the collection, analysis, presentation, and interpretation of data and probability. Analysis includes descriptive statistics, correlation and regression, confidence intervals and hypothesis testing. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 1314 with a C or better.

MATH 1350. Fundamentals of Mathematics I. 3 Hours.
This course provides a rigorous study of the concepts and applications of sets, functions, numeration systems, number theory, and properties of the natural numbers, integers, rational, and real number systems with an emphasis on problem solving and critical thinking. This course is designed for students seeking EC-6 teacher certification. Appropriate computer software and hand held technologies will be utilized. Prerequisite: Must have satisfied the math portion of the TSI.

MATH 1351. Fundamentals of Math II. 3 Hours.
This course provides a rigorous study of the concepts and applications of geometry, probability, statistics, and measurement with an emphasis on problem solving and critical thinking. This course is designed for students seeking EC-6 teacher certification. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 1350 and MATH 1314 with a C or better.

MATH 2305. Discrete Mathematics. 3 Hours.
This course provides a rigorous study of the concepts and applications of topics designed to prepare math, computer science, and engineering majors for a background in abstraction, notation, and critical thinking for the mathematics most directly related to computer science. Topics include: logic, relations, functions, basic set theory, countability and counting arguments, proof techniques, mathematical induction, combinatorics, discrete probability, recursion, sequence and recurrence, elementary number theory, graph theory, and mathematical proof techniques. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2413 with a C or better.

MATH 2318. Linear Algebra. 3 Hours.
This course provides a rigorous study of the concepts and applications of systems of linear equations, matrices, vector spaces, determinants, eigenvectors, eigenvalues, and linear transformations. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2414 with a C or better.
MATH 2320. Differential Equations. 3 Hours.
This course provides a rigorous study of the concepts and applications of first- and second-order ordinary differential equations and systems of ODEs, existence and uniqueness of solutions, initial value problems, the Laplace Transform, compartment models, first- and second-order rate laws, eigenvalues, eigenvectors, and eigenspaces of matrices. This course is taught with a modeling perspective and will utilize applications from areas such as physics, biology, pharmacology, chemistry, ecology, sociology, and electric engineering. Numerical, symbolic and graphing techniques will be used to obtain solutions. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2414 with a C or better.

MATH 2412. Pre-Calculus. 4 Hours.
This course provides a rigorous study of the concepts and applications of the fundamental topics of calculus including algebraic functions and their graphs, trigonometric functions and identities, polynomial, rational, exponential, and logarithmic functions, solutions to equations and inequalities, analytic geometry, and polar coordinates. This course is designed to prepare STEM majors for success in calculus. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 1314 with a C or better or the equivalent preparation by STEM department chair permission. Placement will also be determined by the Math Placement Exam score.

MATH 2413. Calculus I. 4 Hours.
This course provides a rigorous study of the concepts of limits and continuity; the Fundamental Theorem of Calculus; definition of the derivative of a function and techniques of differentiation; applications of the derivative to maximizing or minimizing a function; the chain rule, mean value theorem, and rate of change problems; curve sketching; definite and indefinite integration of algebraic, trigonometric, and transcendental function, with an application to calculation of areas. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 1314 and MATH 1316 with a C or better, or MATH 2412 with a C or better. Placement will also be determined by the Math Placement Exam score.

MATH 2414. Calculus II. 4 Hours.
This course provides a rigorous study of the concepts and applications of integration, trigonometric functions, sequences and series, indeterminate forms, improper integrals, and elementary differential equations. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2413 with a C or better.

MATH 2415. Calculus III. 4 Hours.
This course provides a rigorous study of the concepts and applications of three dimensional analytic geometry and vectors, differentiation and integration of vector-valued functions and motion in space, arc length and curvature, functions of several variables, partial derivatives, multiple integrals, and integration in vector fields. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2414 with a C or better.

MATH 289. Independent Study in Mathematics. 1-4 Hours.
This course provides an option for individualized instruction and research. It may be repeated when topics vary. Prerequisite: Instructor approval.

MATH 321. College Geometry. 3 Hours.
This course provides a rigorous study of the concepts and applications of the properties of finite geometrics and of points, lines, triangles, and circles in Euclidean geometry. Non-Euclidean geometries will also be studied and contrasted. This course will be taught with a discovery approach in which students scaffold their comprehension through careful axiomatic study. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2413 with a C or better.

MATH 326. Problem Solving for Elementary Teachers. 3 Hours.
This course provides a rigorous study of the concepts of effective problem solving strategies. Strategies will be applied to various problems taken from critical areas of algebra, number concepts, geometry, probability, statistics, measurement, and logic. The scope and sequence will be formative in nature and use a discovery approach to allow students to scaffold their critical thinking skills into a mathematical problem solving rubric. Logical reasoning will be emphasized in all strategies to distinguish the importance of the process of problem solving rather than just finding the answer. Appropriate computer software and hand held technologies will be utilized. With pre-service elementary teachers in mind, this course will also integrate the pedagogy of modeling these skills to elementary mathematics students. Prerequisite: MATH 1314 and MATH 1350 and MATH 1351 with a C or better.

MATH 330. Math Foundations and Applications. 3 Hours.
This course provides a rigorous study of the foundational concepts that are inherent in upper division mathematics. It is intended to provide a transition from the mechanical understanding of lower-level concepts to the abstract nature of upper-level ideas. Students are exposed to a wide range of introductory topics such as set theory, functions/relations, logic, groups, proof-writing, combinatorics, countable/uncountable sets, and elements of advanced calculus. Prerequisite: MATH 2414.

MATH 334. Introduction to Abstract Algebra. 3 Hours.
This course provides a rigorous study of the concepts and applications of the properties of the integers, permutations, groups, rings, integral domains, and fields. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2414 with a C or better.

MATH 357. Probability and Statistics. 3 Hours.
This course provides a rigorous study of the concepts and applications of probability, discrete and continuous distribution, estimation, and hypothesis testing using concepts from calculus. Appropriate computer software and hand held technologies will be utilized. Course is cross-listed with EE 307. Credit cannot be granted for both MATH 357 and EE 307. Prerequisite: MATH 2414 with a C or better.
MATH 372. Cryptology I. 3 Hours.
This course provides a rigorous study of the introductory concepts and applications of cryptography and various cryptosystems. A familiarity with concepts from discrete mathematics and linear algebra is assumed in the student. Topics include character ciphers, block and stream ciphers, exponentiation ciphers, public key cryptography, knapsack ciphers, and cryptographic protocols/applications. Computer software will be utilized where appropriate. Prerequisite: MATH 2414 and MATH 2305.

MATH 380. Real Analysis. 3 Hours.
Sets, relations and functions, sequences of real numbers and sequences in R^n, continuous and differentiable functions on R^n, Riemann Integral. Prerequisites: MATH 2415 and MATH 2305.

MATH 415. Applied Numerical Analysis. 3 Hours.
This course provides a rigorous study of the concepts and applications of numerical approximation methods for the solution of problems such as systems of linear equations, curve fitting, root finding, differentiation, and integration. This course will have a strong emphasis in the applications of these numerical methods and how to implement them in computer programs using algorithms. Prior experience in a programming language will be useful but not essential and as such appropriate computer software and hand-held technologies will be utilized. Prerequisite: MATH 2414 with a C or better.

MATH 426. Problem Solving. 3 Hours.
Effective problem solving strategies will be applied to various examples from areas such as algebra, geometry, probability, calculus, trigonometry, number theory, discrete math, linear algebra, and logic. The scope and sequence will be formative in nature and use a discover approach to allow students to scaffold their critical thinking skills into a mathematical problem solving rubric. Logical reasoning will be emphasized in all strategies to distinguish the importance of the process of problem solving rather than just finding the answer. Appropriate computer software and hand held technologies will be utilized. With pre-service math teachers in mind, this course will also focus on the pedagogy of teaching these skills to 7-12 grade mathematics students. Prerequisite: MATH 2414 with a C or better.

MATH 430. Combinatorics and Graph Theory. 3 Hours.
This course provides a rigorous study of the topics of combinatorics and graph theory. Topics include principles of counting, graphs, digraphs, Eulerian and Hamiltonian graphs, connectivity, path algorithms, trees, planarity, coloring of graphs, tree searches and sortings, binomial coefficients, generating functions, recurrence relations, and networks flows, and associated algorithms. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2414 with a C or better.

MATH 431. Internship in Mathematics. 3 Hours.
The internship is a work experience that will allow the student to develop skills, gain hands-on business experience, and test career choices and options. The internship will complement and validate the student’s academic training.

MATH 437. Number Theory. 3 Hours.
This course provides a rigorous study of the concepts and applications of the properties of integer representations and operations, analysis and complexity of algorithms, mathematical induction, divisibility, primes and composites, congruences and systems, the Fundamental Theorem of Arithmetic, Pythagorean triples, multiplicative functions, and cryptology. Appropriate computer software and hand held technologies will be utilized. Prerequisite: MATH 2414 with a C or better.

MATH 450. Combinatorics and Graph Theory. 3 Hours.
This course provides a rigorous study in the topics of combinatorics and graph theory. Topics include principles of counting, graphs, digraphs, Eulerian and Hamiltonian graphs, connectivity, path algorithms, trees, planarity, coloring of graphs, tree searches and sortings, binomial coefficients, generating functions, recurrence relations, and networks flows, and associated algorithms. Appropriate computer software and hand-held technologies will be utilized. Prerequisite: MATH 2414 and MATH 2305.

MATH 489. Individual Study. 1-3 Hours.
This course provides an option for individualized instruction and research. It may be repeated when topics vary. Prerequisite: Instructor approval.

MATH 493. Capstone in Mathematics. 3 Hours.
This is the conclusion of preparation of a portfolio of mathematical experiences composed of artifacts from throughout a student’s time in upper-level mathematics classes. Presentation of a selected portfolio artifact will be required. Students will be graded on Satisfactory (S) or Unsatisfactory (U) basis. Prerequisite: Senior standing and instructor permission.

MATH 499. Independent Research. 1-6 Hours.
This is an independent research in Math conducted by a student under the guidance of a faculty member of his or her choice. The student is required to maintain a research journal and submit a project report by the end of the semester and potentially make an oral presentation on the project. SCH and hours are by arrangement and, with a change in content, this course may be repeated for credit. Prerequisite: Consent of instructor.

PHYS 1415. Physical Science I. 4 Hours.
Algebra-based physical science for students in pre-professional programs, biology, geology, or architecture who do not expect to do additional work in engineering or physics. Topics include elementary vector algebra, mechanics, heat, thermodynamics and sound.

RDG 343. Reading Beyond the Primary Grades. 3 Hours.
This course teaches content area teachers how to help their students learn from textbooks, including techniques for evaluating both textbooks and students. Coping with the reading, demands of textbooks, and study skills will be learned.
RDG 350. Emergent Literacy Development. 3 Hours.
This course addresses the foundations and pedagogy of reading instruction to provide the pre-service EC-6 teacher with knowledge and skills necessary to promote early literacy development. Students will develop competency in the components of the science of teaching reading, including oral language development, phonological and phonemic awareness, the alphabetic principle, high frequency vocabulary development, decoding and spelling strategies, fluency development and comprehension. A variety of techniques will be examined to enable the pre-service teacher to design a multidimensional word recognition program. The targeted grade levels for this course are Early Childhood through grade two.

SPED 410. Introduction to Individual with Exceptionalities. 3 Hours.
This course develops students’ foundational knowledge of historical perspectives, educational principles, laws, and professional ethics and roles in the fields of special education and English Language Learners (ELL). It focuses on the learning and behavioral characteristics of diverse learners, including students with exceptionalities (which includes disabilities, Attention Deficit Hyperactivity Disorders, Dyslexia, and Gifted/Talented) students who are ELL and students who are Culturally and Linguistically Diverse Exceptional (CLDE) learners. Additionally, this course introduces instructional strategies, appropriate curriculum, accommodations, modifications, and assistive technology to ensure the success of all learners.

SPED 418. Research, Trends, and Issues in Education. 3 Hours.
This course presents current research, issues, and trends in education, specifically emphasizing the teaching-learning process to meet specific student learning needs. Emphasis is placed on teacher candidates integrating best practices in the teaching-learning process including: 1) Strength-based strategies, 2) Understanding by Design, 3) Differentiation, 4) Differentiation for Neurodiversity, 5) State Accountability Testing, and 6) Teacher Evaluation. Prerequisite: Admission to the Teacher Preparation Program.

Faculty

Dr. Sean Bailey
Assistant Professor
Email:

Dr. Wai Yuen Chan
Assistant Professor
Email: wychan@tamut.edu

Dr. Ram Neupane
Assistant Professor
Email: ram.neupane@tamut.edu

Chris Sinquefield
Instructor
Email: chris.sinquefield@tamut.edu

Dr. Eun Ji Cho
Assistant Professor
Email:

Dr. Rebeca Cooper
Assistant Professor
Email:

Laura Currey
Instructor
Email: laura.currey@tamut.edu

Melba Foster
Instructor
Email: mfoster@tamut.edu

Dr. Teri Fowler
Associate Professor
Email: teri.fowler@tamut.edu

Katheryn Hartshorn
Instructor
Email: khartshorn@tamut.edu

Dr. Sara Lawrence
Associate Professor
Email: sara.lawrence@tamut.edu
Debora Shidemantle
Instructor
Email: debora.shidemantle@tamut.edu

Dr. Abbie Strunc
Assistant Professor
Email: astrunc@tamut.edu