BIOLOGY 7-12 COMPOSITE SCIENCE CERTIFICATION

Teacher Preparation Program Admission Requirements

Apply 3rd Year, 1st Semester
1. Application to Teacher Prep Program via TK20 in September or February
2. GPA requirement of 2.8 cumulative
3. Completion of 15 hours in Content / Major Area for certification in 7-12 with no grade below C

Biology w/7-12 Composite Science Teacher Certification Degree Requirements

Students should refer to their DegreeWorks degree audit in their Web for Students account for more information regarding their degree requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1306</td>
<td>Biology for Science Majors I ⁶</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1106</td>
<td>Biology for Science Majors I Lab ⁶</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 1307</td>
<td>Biology for Science Majors II ⁶</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1107</td>
<td>Biology for Science Majors II Lab ⁶</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 1311</td>
<td>General Chemistry I ⁶</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1111</td>
<td>General Chemistry I (Lab) ⁶</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 1312</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1112</td>
<td>General Chemistry II (Lab)</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 1301</td>
<td>College Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1101</td>
<td>College Physics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 1302</td>
<td>College Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1102</td>
<td>College Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>GEOL 1403</td>
<td>Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 307</td>
<td>General Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 308</td>
<td>Invertebrate Zoology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 310</td>
<td>Genetics (EL)</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 402</td>
<td>Cell and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 466</td>
<td>Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 481</td>
<td>Seminar in Biology</td>
<td>3</td>
</tr>
<tr>
<td>UD Biology Electives</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Other Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDG 343</td>
<td>Reading Beyond the Primary Grades</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1314</td>
<td>College Algebra ⁶</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1342</td>
<td>Elementary Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>10sch Upper Division (300 & 400 level) Electives</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Professional Development

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 311</td>
<td>Growth and Development for EC to Grade 12 (EL)</td>
<td>3</td>
</tr>
<tr>
<td>ED 321</td>
<td>Foundations of Education for Secondary (EL)</td>
<td>3</td>
</tr>
</tbody>
</table>

Block 1:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 331</td>
<td>Classroom and Behavior Management ⁸</td>
<td>3</td>
</tr>
<tr>
<td>ED 495</td>
<td>Block 1 - Co-Teaching Practicum for Certification Candidates (EL) ⁸</td>
<td>3</td>
</tr>
</tbody>
</table>

Block 2:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 496</td>
<td>Block 2 - Co-Teaching Practicum for Certification Candidates (EL) ⁹</td>
<td>3</td>
</tr>
<tr>
<td>SPED 418</td>
<td>Research, Trends, and Issues in Education ⁹</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives (As needed to satisfy minimum degree requirements and 54 semester credit hours of Upper Division Coursework)

Minimum Grade of "C" required in all Major, Ed, SPED and Professional Development Courses

Minimum Hours for Degree

120
Undergraduate Courses in Biology w/7-12 Composite Science

BIOL 1106. Biology for Science Majors I Lab. 1 Hour.
This course provides students with hands-on exploration in the biological sciences. Content includes the process of scientific inquiry, important concepts in biochemistry and genetics, and introduction to laboratory techniques. Corequisite: BIOL 1306.

BIOL 1107. Biology for Science Majors II Lab. 1 Hour.
This course provides students with hands-on exploration in the biological sciences. Content includes a survey of plants, animals, and microorganisms as well as studies of basic biological processes such as digestion, circulation, and nervous system function. Corequisite: BIOL 1307.

BIOL 1108. Biology for Non-science Majors I Lab. 1 Hour.
This course provides students with hands-on exploration in the biological sciences. Content includes the process of scientific inquiry, important concepts in biochemistry and genetics, and introduction to laboratory techniques. Prerequisite or Corequisite: BIOL 1308.

BIOL 1109. Biology for Non-science Majors II Lab. 1 Hour.
This course provides students with hands-on exploration in the biological sciences. Content includes the process of scientific inquiry, important concepts in biochemistry and genetics, and introduction to laboratory techniques. Prerequisite or Corequisite: BIOL 1309.

BIOL 1306. Biology for Science Majors I. 3 Hours.
This course introduces the student to the nature of science and the application of science to contemporary issues. Content includes the chemistry of life, the cell, genetics, and mechanisms of evolution. Corequisite: BIOL 1106.

BIOL 1307. Biology for Science Majors II. 3 Hours.
This course introduces the student to the nature of science and the application of science to contemporary issues. Content includes plant form and function, animal form and function, and ecology. Prerequisite: BIOL 1306. Corequisite: BIOL 1107.

BIOL 1308. Biology for Non-science Majors I. 3 Hours.
This course introduces the student to the nature of science and the application of science to contemporary issues. Content includes the chemistry of life, the cell, genetics, and mechanisms of evolution. NOTE: Lab may be required for specific majors.

BIOL 1309. Biology for Non-Science Majors II. 3 Hours.
This course introduces the student to the nature of science and the application of science to contemporary issues. Content includes plant form and function, animal form and function, and ecology. NOTE: Lab may be required for specific majors. Prerequisite: BIOL 1309.

BIOL 2401. Human Anatomy and Physiology I. 4 Hours.
This course covers basic human anatomy and physiological principles focusing on the cellular and tissue levels and their integration into the integumentary, skeletal, muscular, and nervous systems. C or better in BIOL 1306 or 35 or better on the Biology Readiness test.

BIOL 2402. Human Anatomy and Physiology II. 4 Hours.
This course covers basic human anatomy and physiological principles focusing on the nervous, endocrine, digestive, respiratory, cardiovascular, immune, urinary, and reproductive organ systems. Prerequisite: C or better in BIOL 2401.

BIOL 2405. Introduction to Microbiology. 4 Hours.
This is an introductory microbiology course consisting of lecture and laboratory sessions and designed for the non-biology majors and allied health students. Topics include the morphology, physiology, and taxonomy of representative groups of pathogenic and nonpathogenic microorganisms; human-microbe interactions; public health microbiology; and host defense mechanisms. BIOL 1306 is recommended prior to BIOL 2405.

BIOL 2406. Environmental Biology. 3 Hours.
This course provides an introduction to the basic principles of bioenvironmental science with emphasis on scientific literacy, current events, global and international issues, historic context, and the relationship between humans and the natural world. The course will also address conservation, pollution, energy, and other contemporary environmental problems.

BIOL 289. Independent Study. 1-4 Hours.
This course provides individual instruction. Students may repeat the course when topics vary.

BIOL 303. Animal Nutrition. 3 Hours.
This is a course designed to introduce the study of animal nutrition in all aspects, and is designed for Biology majors, especially those interested in Veterinary school. Topics include the nutrition of companion animals, livestock, and exotic species. Topics will also include the anatomy, physiology and biochemistry of the gastrointestinal system, nutrient procurement and use, feed additives, growth stimulants, metabolic diseases, and diet therapy. Prerequisites: BIOL 1306, BIOL 1307, BIOL 1106, BIOL 1107 or equivalent.
BIOL 307. General Ecology. 3 Hours.
This course covers the principles of ecology with special reference to populations and their ecosystems, distribution, biotic communities, and environmental relationships. This course requires field trips. Prerequisite: BIOL 1306 and BIOL 1106, and BIOL 1307 and BIOL 1107.

BIOL 308. Invertebrate Zoology. 3 Hours.
This course explores the diversity of invertebrate types, morphologically, embryologically, and physiologically. The course emphasizes the ecological role of invertebrates. Prerequisite: BIOL 1306 and BIOL 1106, and BIOL 1307 and BIOL 1107.

BIOL 310. Genetics (EL). 4 Hours.
This course deals with the principles of heredity and variation and their application to plants, lower animals and man. This course integrates the principles of experiential learning and meets the criteria for undergraduate research. Prerequisite: 8 SCH of Biology.

BIOL 311. General Microbiology. 4 Hours.
General Microbiology is an upper division undergraduate course on microbial biology consisting of both lectures and laboratory activities. In depth lectures cover eukaryotic and prokaryotic microbes and viruses, but emphasis is put on bacteria. This course provides a conceptual and experimental background in microbiology. This course is highly recommended for the pre-medical and pre-pharmacy students. Prerequisite: Successful completion of two semesters of Biology.

BIOL 330. Introduction to Geographic Information Systems. 4 Hours.
Introduces the concepts and applications of computer-based spatial data handling, known as geographic information systems (GIS) technology. Illustrates the essential methods of GIS and its applications in fields including geography, natural resource management, planning and environmental science. Students gain application skills via a series of practical exercises illustrating problem-solving strategies using up-to-date GIS software packages. Lectures, laboratories, and special assignments will be utilized in this course. Pre-requisites: MATH 1314.

BIOL 332. Molecular Pharmacology and Toxicology. 3 Hours.
This course will provide an overview of pharmacology based on principles of drug action with emphasis on drug classes. Topics include pharmacology of the autonomic, cardiovascular, central nervous and endocrine systems. Prerequisites: BIOL 1306 & 1106, BIOL 1307 & 1107; and BIOL 2401 & 2402 or BIOL 449.

BIOL 335. Medical Terminology. 3 Hours.
This web-based course utilizes a systems approach to the language of medicine, including the analysis and utilization of word roots, combining forms, prefixes, suffixes, and medical terms; emphasis is on written and spoken medical vocabulary. Prerequisite: Completion of two semesters of Biology courses.

BIOL 343. Practical Paleontology. 3 Hours.
Designed for students with an interest in fossils and how they can be used to reconstruct ancient ecosystems. This course covers principles of fossil data collection, preparation, conservation, and management with hands-on experience collecting fossils from the Texas, Oklahoma and Arkansas area. Practice fossil preparation skills and learn to identify fossils based on published descriptions. Students will be introduced to paleontological research using the fossils they find in two brief guided research project. Prerequisite: BIOL 1307 or equivalent or instructor's permission.

BIOL 402. Cell and Molecular Biology. 4 Hours.
This course consists of lectures and laboratory activities and will provide a strong background in the cellular and molecular aspects of biology. Topics include: methods in cellular and molecular biology, transcription in prokaryotes and eukaryotes, posttranscriptional events, translation, DNA replication, and recombination. Prerequisite: 8 SCH of Biology.

BIOL 415. Darwin and the Origin of Species. 3 Hours.
This course will focus on Darwin's hypotheses and compare his ideas with modern developments in the study of biological evolution.

BIOL 420. Global Change (EL). 3 Hours.
This course will focus on global change. Major topics covered include climate change, sea level change/coastal inundation, ocean acidification, and permafrost and the changing Arctic. This course integrates the principles of Experiential Learning (EL) and meets the criteria for project-based research. Prerequisite: 6 SCH of Biology.

BIOL 421. Endangered Ecosystems. 3 Hours.
This course will focus on endangered ecosystems and organisms from around the world. Coral reefs, Brazilian rain forest destruction, amphibian crisis, and the Gulf of Mexico Dead Zone will be studied in detail. Prerequisite: 6 SCH in Biology.

BIOL 422. Atmosphere and Biosphere. 3 Hours.
This course will focus on how the atmosphere affects the biosphere. Stratospheric ozone, black carbon (soot), El Nino, and the environmental impact of carbon monoxide will be studied in detail. Prerequisite: 6 SCH of Biology.

BIOL 425. Immunology. 4 Hours.
This is a course designed to introduce the immune system in all its aspects and is designed for the allied health students and biology majors. Topics include innate and adaptive immunity, generation of antibody and lymphocyte diversity, signaling molecules, cellular and humoral immunity, immunological failure in disease, and manipulation of immunity.

BIOL 430. Astrobiology. 3 Hours.
This course will focus on the understanding that astrobiology is concerned with the origin, evolution, and distribution of life in the Universe. It investigates life in its cosmic context. Cross listed with BIOL 530. Prerequisite: Two semesters of Biology or permission of the instructor.
BIOL 437. Herpetology. 3 Hours.
This is a course designed to introduce the study of herpetology in all aspects, and is designed for Biology and science majors. Topics include the anatomy, physiology, taxonomy, systematics, natural history, distribution, ecology, and conservation of amphibians and reptiles; primarily North America species with special emphasis on local Texas native species. Prerequisites: BIOL 1306, BIOL 1307, BIOL 1106, BIOL 1107.

BIOL 443. Paleozoology. 3 Hours.
This course looks at the evolution of modern animals by bringing together recent advances in genetics with the fossil record. This course will provide an evolutionary perspective on the origins of important groups of animals from single-celled organisms to modern humans through lectures, discussions, and hands-on workshops with fossils. Prerequisite: BIOL 308 or instructor permission.

BIOL 445. Virology. 3 Hours.
This course will introduce students to the biology of viruses, with a particular focus on viruses of medical importance. Topics covered will include virus structure; classification, evolution, and life cycles of viruses; methods used to study viruses; their interaction with host cells; mechanisms of pathogenicity; host responses of the host to viral infection and vaccine applications; in-depth study of the life cycles of the major classes of viruses and discussion of emerging viruses. Prerequisite: Two semesters of biology and BIOL 311, or instructor permission.

BIOL 446. Survey of Human Disease and Pathophysiology. 3 Hours.
This course is designed to provide the structural and functional characteristics of common and important diseases as well as the principles of diagnosis and treatment.

BIOL 447. Synthetic Biology. 3 Hours.
This course will explore the application of synthetic biology in the biomolecular sciences, looking at a range of techniques that have been used to build useful tools from biological components. We will focus on the current use of molecular bioengineering in the area of human health. This course reinforces advanced concepts in molecular biology, and would be useful for students interested in careers in medicine or pharmaceutical research. Cross-listed with BIOL 547. Prerequisite: Two semesters of biology and one semester of microbiology or approval of instructor.

BIOL 449. Vertebrate Histology. 4 Hours.
This course is the study of the cell and fundamental tissue types to include the microscopic structure of the organ systems of representative vertebrates. Emphasis will be on the relationship between microscopic structure and function. Prerequisite: Two semesters of biology, with Anatomy and Physiology recommended but not required.

BIOL 450. Limnology. 4 Hours.
This course is the study of the biological, chemical, and physical characteristics of the freshwater environment. Prerequisite: Two semesters of biology.

BIOL 466. Evolutionary Biology. 3 Hours.
This course covers the basic principles, mechanisms, and patterns of evolutionary biology including a historical survey of related ideas. Prerequisite: Two semesters of biology.

BIOL 470. Internship in Biology. 1-3 Hours.
This is a directed internship that provides biology students with the applications of biology related knowledge in an organization. The student receives hands-on experience under the joint guidance of a professional from an organization and a faculty supervisor. 1-3 credit hours available. May be repeated up to a maximum of 3 SCH. Prerequisite: Consent of instructor.

BIOL 472. Introduction to Forensic Science. 3 Hours.
This course is a study of basic concepts, techniques, practices, and procedures of criminalistics, including the most current technologies in forensic analysis. Criminal investigation of actual cases will be discussed with a minimum of scientific terminology. In addition, the course will emphasize the nature of physical evidence, including the use of DNA profiling. This course is strongly recommended for Criminal Justice majors and Pre-Allied Health track students in Biology. Prerequisite: Junior or Senior standing.

BIOL 473. Fundamentals of DNA Forensics. 4 Hours.
Fundamentals of DNA forensics explores the current methods of DNA typing. It encompasses current forensic DNA analysis methods, as well as biology, technology, and genetic interpretation. The course will follow the path of DNA evidence starting with sample collection and the processes of DNA extraction, quantitation, amplification, and statistical interpretation. By the end of the course, students will explore the important role of DNA evidence for law enforcement. Cross-listed with BTEC 473.

BIOL 481. Seminar in Biology. 3 Hours.
This course requires student participation in general and specific topics in biology. May be repeated in a different topic. Prerequisite: Senior standing with Biology major.

BIOL 489. Independent Study in Biology. 1-4 Hours.
This course provides individual instruction. Students may repeat the course when topics vary.

BIOL 490. Introduction to Biotechnology. 4 Hours.
This course will explore the principles and applications of DNA science with special reference to recombinant DNA technology. This course is highly recommended for students focusing on a career in the medical field. Prerequisite: Junior or Senior standing.

BIOL 497. Special Topics. 1-4 Hours.
Instructors will provide an organized class designed to cover areas of specific interest. Students may repeat the course when topics vary.
BIOL 499. Independent Research. 1-6 Hours.
Independent research in Biology conducted by a student under the guidance of a faculty member of his or her choice. The student is required to maintain a research journal and submit a project report by the end of the semester and potentially make an oral presentation on the project. SCH and hours are by arrangement and, with a change in content, this course may be repeated for credit. Prerequisite: Consent of instructor.

CHEM 1311. General Chemistry I. 3 Hours.
This course covers the fundamental principles of chemistry. This course is the first of two general chemistry courses offered sequentially for majors in biological, health, and physical sciences. Topics include measurements, fundamental properties of matter, states of matter, chemical reactions, chemical stoichiometry, periodicity of elemental properties, atomic structure, chemical bonding, molecular structure, solutions, properties of gases, and an introduction to thermodynamics and descriptive chemistry. Prerequisite: MATH 1314 or MATH 2412. Corequisite: CHEM 1111.

CHEM 1111. General Chemistry I (Lab). 1 Hour.
This course introduces students to basic laboratory experiments supporting theoretical principles presented in CHEM 1311. The course introduces the scientific method, experimental design, data collection and analysis, and preparation of laboratory reports. Corequisite: CHEM 1311.

CHEM 1312. General Chemistry II. 3 Hours.
This course is the second course of the general chemistry sequence. Topics include chemical equilibrium, phase diagrams and specrometry, acid-base concepts, thermodynamics, kinetics, electrochemistry, nuclear chemistry, and an introduction to organic chemistry and descriptive organic chemistry. Prerequisite: CHEM 1111 and CHEM 1311. Corequisite: CHEM 1312.

CHEM 1112. General Chemistry II (Lab). 1 Hour.
This course introduces students to basic laboratory experiments supporting theoretical principles presented in CHEM 1312. Students will be introduced to the use of the scientific method in experimental design, chemical instrumentation, data collection and analysis, and preparation of laboratory reports. Prerequisite: CHEM 1111. Corequisite: CHEM 1312.

ED 311. Growth and Development for EC to Grade 12 (EL). 3 Hours.
This is an introductory education course which presents theories of children's growth and development along with their relationship to learning and teaching. Cultural, emotional, physical, intellectual, and learning differences are studied for their impact on learning and educational opportunity. Students must be considered in their junior year and will be required to participate in 8 hours of field experience. This course integrates the principles of Experiential Learning and meets the criteria of field work.

This course provides students seeking certification in grades 4-8 and 7-12 skills for designing instruction and assessment that promote a growth mindset and create a positive, productive classroom environment. Students will apply skills and knowledge in lesson and unit planning as well as content pedagogy specific to area of certification. Traditional as well as innovative technologies will be addressed. State of Texas Assessments of Academic Readiness (STAAR) and End of Course Exams (EOC) effective content pedagogy will be emphasized in this course. This course integrates the principles of Experiential Learning and meets the criteria for field work.

ED 331. Classroom and Behavior Management. 3 Hours.
This course presents best practices in classroom and behavior management including management of time, materials, and space. Additionally, the course examines strategies for managing individual and large-group student behaviors, transitions, lab activities, and other arrangements for classrooms in general and special education. Prerequisite: Admitted to the Teacher Preparation Program.

ED 435. Secondary Content Pedagogy. 3 Hours.
This course provides students seeking certification in grades 4-8 and 7-12 with pedagogical best-practices. Students will learn lesson planning, assessment, and available resources for their specific content area. Methods for accessing and processing information through traditional as well as new technologies will be addressed. Prerequisite: Admission to the Teacher Preparation Program.

ED 495. Block 1 - Co-Teaching Practicum for Certification Candidates (EL). 3 Hours.
This course provided clinical experience in the public school setting as part of the field experience requirements for the undergraduate Teacher Preparation Program. The Teacher Candidate is required to spend six hours per week for 12 weeks in an assigned classroom. A university field supervisor in conjunction with the cooperating teacher supervises the Clinical Teacher. Block 1 is the first semester of the co-teaching assignment (2 semesters) in which the Teacher Candidate and Cooperating Teacher are considered co-teachers for the class. Course is graded on a Satisfactory (S) or Unsatisfactory (U) basis for 3 SCH. This course integrates the principles of experiential learning and meets the criteria for internship. Prerequisite: Met admission requirements to undergraduate field based placement guidelines.

ED 496. Block 2 - Co-Teaching Practicum for Certification Candidates (EL). 3 Hours.
This course provided clinical experience in the public school setting as part of field experience requirements for the undergraduate Teacher Preparation Program. The Teacher Candidate is required to spend 72 complete instructional days in an assigned classroom. A university field supervisor in conjunction with the cooperating teacher supervises the Clinical Teacher. Block 2 is the second semester of the co-teaching assignment (2 semesters) in which Teacher Candidate and Cooperating Teacher are co-teachers for the public school class. Course graded on Satisfactory (S) or Unsatisfactory (U) basis for 3 SCH. This course integrates the principals of experiential learning and meets the criterion for internship. Prerequisite: successful completion of ED 495, continued acceptance in the public school classroom, and completion of program requirements.
ITED 350. Technology and Digital Literacy. 3 Hours.
This course is designed to assist students with developing skills for using web applications and mobile computing. The activities in the course assist students with promoting critical thinking and problem-solving skills by engaging them with digital tools being used in daily life. Topics covered include: technology in society, computers and digital components, the internet—how it works and making the most of web resources, applications for work and play, and systems software—operating systems, utilities and file management, information technology ethics, understanding and assessing hardware, digital devices and media and protection, information technology careers, software programming, databases and information systems, networking and security. There is an emphasis on using the Microsoft Office Suite of Products in this course including Word, Excel, PowerPoint, and Access.

PHYS 1301. College Physics I. 3 Hours.
This course covers algebra-level physics sequences for students in pre-professional programs, biology, geology, or architecture who do not expect to do additional work in engineering or physics. This course covers basic mechanics, fluids, and thermodynamics. Prerequisite: MATH 1314 and MATH 1316, or MATH 2312 or MATH 2412. Corequisite: PHYS 1101.

PHYS 1101. College Physics I Lab. 1 Hour.
Physics lab covers mechanics, heat, thermodynamics, and sound. Corequisite: PHYS 1301.

PHYS 1302. College Physics II. 3 Hours.
This course covers algebra-level physics sequence for students in pre-professional programs, biology, geology, and architecture who do not expect to do additional work in engineering or physics. The course covers electricity and magnetism, light, and modern physics. Prerequisite: PHYS 1301 and PHYS 1101, or PHYS 1401. Corequisite: PHYS 1102.

PHYS 1102. College Physics II Lab. 1 Hour.
Physics lab covers electricity and magnetism, light, and modern physics. Corequisite: PHYS 1302.

RDG 343. Reading Beyond the Primary Grades. 3 Hours.
This course teaches content area teachers how to help their students learn from textbooks, including techniques for evaluating both textbooks and students. Coping with the reading, demands of textbooks, and study skills will be learned.

SPED 410. Introduction to Individual with Exceptionalities. 3 Hours.
This course develops students’ foundational knowledge of historical perspectives, educational principles, laws, and professional ethics and roles in the fields of special education and English Language Learners (ELL). It focuses on the learning and behavioral characteristics of diverse learners, including students with exceptionalities (which includes disabilities, Attention Deficit Hyperactivity Disorders, Dyslexia, and Gifted/Talented) students who are ELL and students who are Culturally and Linguistically Diverse Exceptional (CLDE) learners. Additionally, this course introduces instructional strategies, appropriate curriculum, accommodations, modifications, and assistive technology to ensure the success of all learners.

SPED 418. Research, Trends, and Issues in Education. 3 Hours.
This course presents current research, issues, and trends in education, specifically emphasizing the teaching-learning process to meet specific student learning needs. Emphasis is placed on teacher candidates integrating best practices in the teaching-learning process including: 1) Strength-based strategies, 2) Understanding by Design, 3) Differentiation, 4) Differentiation for Neurodiversity, 5) State Accountability Testing, and 6) Teacher Evaluation. Prerequisite: Admission to the Teacher Preparation Program.

Faculty
Dr. Nurul Alam
Professor
Email: nurul.alam@tamut.edu

Dr. David Allard
Professor
Email: david.allard@tamut.edu

Dr. Benjamin Neuman
Professor
Email: bneuman@tamut.edu

Brandon Quaid
Instructor
Email: brandon.quaid@tamut.edu

Dr. Sebastian Schmidl
Assistant Professor
Email: sebastian.schmidl@tamut.edu

Dr. Greg Hogan
Assistant Professor
Email: ghogan@tamut.edu
Dr. Md Abul Kalam
Professor
Email: md.kalam@tamut.edu

Dr. Eun Ji Cho
Assistant Professor
Email:

Dr. Rebeca Cooper
Assistant Professor
Email:

Laura Currey
Instructor
Email: laura.currey@tamut.edu

Melba Foster
Instructor
Email: mfoster@tamut.edu

Dr. Teri Fowler
Associate Professor
Email: teri.fowler@tamut.edu

Katheryn Hartshorn
Instructor
Email: khartshorn@tamut.edu

Dr. Sara Lawrence
Associate Professor
Email: sara.lawrence@tamut.edu

Debora Shidemantle
Instructor
Email: debora.shidemantle@tamut.edu

Dr. Abbie Strunc
Assistant Professor
Email: astrunc@tamut.edu